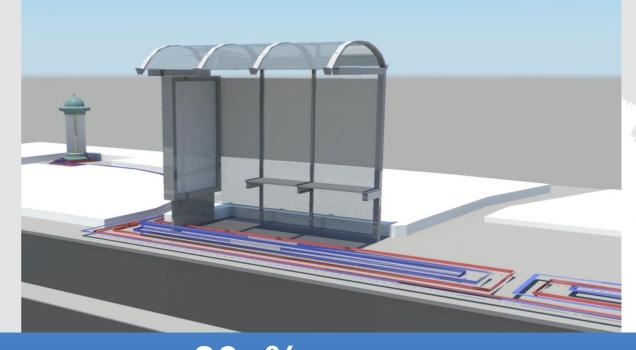



СИСТЕМА РАСПРЕДЕЛЕННОГО СНЕГОТАЯНИЯ ГОРОДА МОСКВЫ (СРС)


группа компаний ИНСОЛАР

СИСТЕМА РАСПРЕДЕЛЕННОГО СНЕГОТАЯНИЯ (СРС)

ПРИДОМОВЫЕ (ДВОРОВЫЕ) ТЕПЛОНАСОСНЫЕ ПЛОЩАДКИ ДЛЯ ТАЯНИЯ СНЕГА

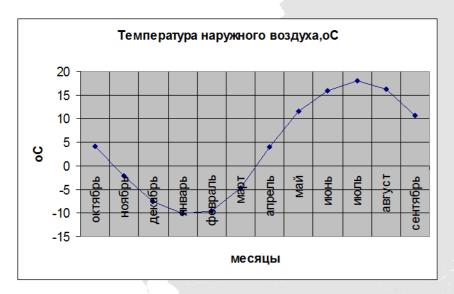
ТЕПЛОНАСОСНЫЕ СИСТЕМЫ УДАЛЕНИЯ СНЕГА С ТЕРРИТОРИЙ ОСТАНОВОК ОБЩЕСТВЕННОГО ТРАНСПОРТА, ПАРКОВОЧНЫХ МЕСТ И ТРОТУАРОВ

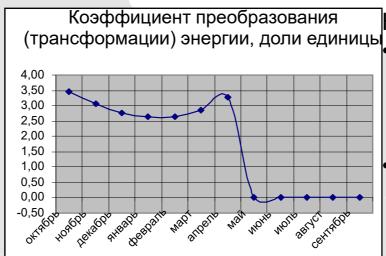
- ✓ экономия энергии до 80 % за счет использования низкопотенциального тепла атмосферного воздуха и исключения транспортировки снежной массы на мнегоплавильные пугкты;
- ✓ снижение экологической нагрузки на природу за счет внедрения энергосберегающей, экологически безопасной технологии таяния снега;
- ✓ снижение нагрузки на транспортную систему городов, за счет исключения вывоза снега.

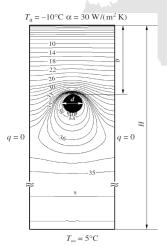
группа компаний ИНСОЛАР

По данным «Мосводоканал НИИ Проект» 53% убираемой снежной массы складируется в несанкционированных местах, 34% вывозится на речные свалки, 11% — на сухие свалки и только 2% утилизируются в снегосплавных камерах и водосточных коллекторах.

Низкое энергопотребление, за счет использования тепловых насосов и НВИЭ, позволяет интегрировать предлагаемые системы снеготаяния в любую территорию


Реализация концепции СРС в городе Москве позволит исключить затраты на вывоз снега с территорий остановочных пунктов и дворовых территорий

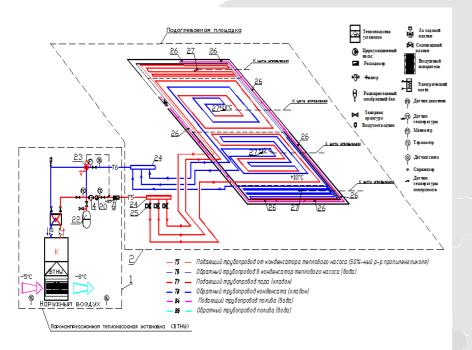


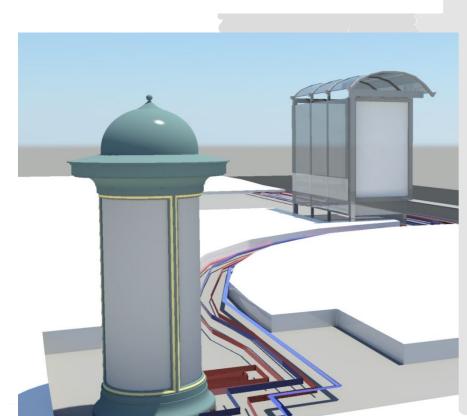

Технологии защищены Патентами РФ: «СПОСОБ ОЧИСТКИ ДОРОГ№ Патент РФ №2419704 от 27.05.2011 г. и «УСТРОЙСТВО ДЛЯ ТАЯНИЯ СНЕГА Патент РФ №2498006 от 06.03.2012 г.

✓ Площадь фактически очищаемой от снега территории г. Москвы (без новых территорий) равна 76 млн. м2, а среднегодовой расчетный объем вывозимого снега составляет 36-40 млн. м3 в год.

ПРИНЦИПЫ ПРОЕКТИРОВАНИЯ СРС

Поле температур в толще нагреваемого дорожного полотна.




группа компаний ИНСОЛАР

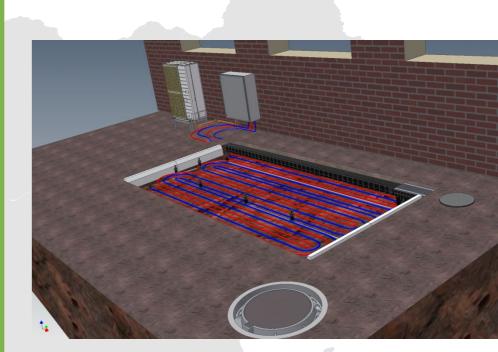
Нормативное обеспечение проектирования:

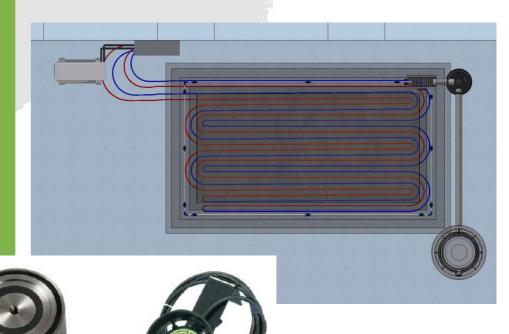
- Руководство по применению тепловых насосов использованием С вторичных энергетических ресурсов и нетрадиционных возобновляемых источников энергии;
- ГОСТ Р 54865-2011. Теплоснабжение Методика зданий. расчета энергопотребности эффективности И системы теплогенерации тепловыми насосами;
- Альбом типовых технологических схемных решений гибридных технических систем теплонасосных теплохладоснабжения (гтст) многоэтажных зданий плотной жилых условиях городской застройки;
- Руководство по проектированию систем утилизации теплоты вытяжного воздуха в жилых и общественных зданиях (нормы и правила);
- Методика комплексного аудита экспертизы энергоэффективности проектов строительства реконструкции жилых, общественно-деловых социальных зданий в городе Москве;
- Технологический регламент гибридных проектирования монтажа систем теплонасосных теплохладоснабжения многоэтажных зданий в условиях плотной городской застройки

ПРОЕКТИРОВАНИЕ СРС

Применяемые технические решения по снеготаянию и удалению снега основываются:

□на мировом опыте создания систем ТСС


□на научных исследованиях по оценке располагаемого потенциала возобновляемых источников энергии (ВИЭ)


□на лабораторных исследованиях оборудования и материалов эксплуатируемых в условиях отрицательных температур

□на данных натурных испытаний теплонасосного оборудования

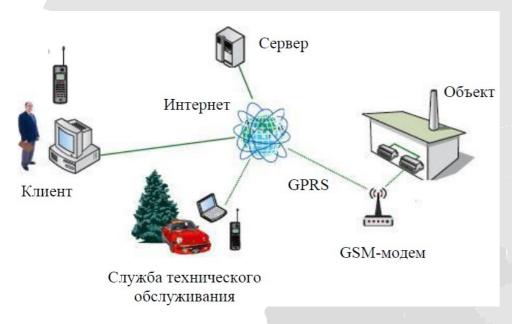
□на патентах РФ

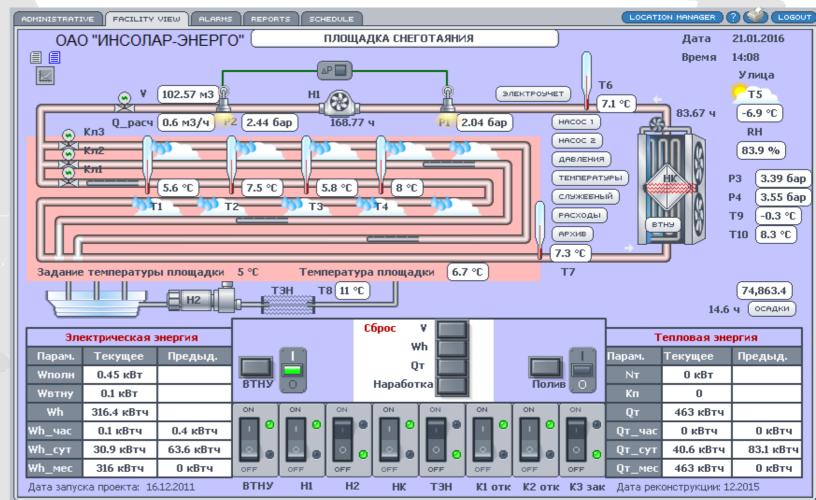
□на результатах численного моделирования в программном комплексе Heatpump+

ПРОИЗВОДСТВО И ПОСТАВКА ТЕПЛОНАСОНОГО ОБОРУДОВАНИЯ ДЛЯ СРС

ГК ИНСОЛАР

имеет 25 летний опыт производства и поставки теплонасосного оборудования




СИСТЕМА СЕРТИФИКАЦИИ ГОСТ Р

ПУСКО-НАЛАДКА, ЭКСПЛУАТАЦИЯ И СЕРВИС

За счет применения системы удаленного контроля и диспетчеризации ДОМИС, обеспечивается:

- полная автоматизация;
- оперативный контроль за состоянием параметров инженерного оборудования;
- информирование сервисной службы о наличии аварий и внештатных ситуаций;
- автоматизированный сбор информации о выработке и потреблении энергии

ПИЛОТНЫЙ ПРОЕКТ ДВОРОВОЙ ТЕПЛОНАСОСНОЙ СИСТЕМЫ РАСПРЕДЕЛЕННОГО СНЕГОТАЯНИЯ

Заказчик – Департамент информационных технологий города Москвы

Концепция

- Тепловой насос использование тепла окружающего воздуха для плавления снега
- Высокая энергоэффективность
 1 потраченный кВт*ч электроэнергии дает 3 кВт*ч
 тепловой энергии
- Экологичность

Ожидаемые эффекты

- Утилизация снега во дворе без вывоза и использования тяжелой техники
- Подогрев спортивной площадки без затрат на очистку снега вручную

Сроки

Октябрь 2019 – Апрель 2020

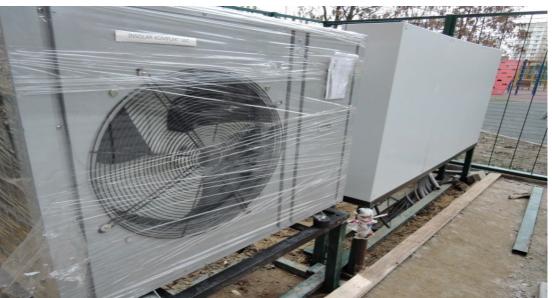
Площадка

Адрес размещения системы – Москва, ВАО, ул. Новокосинская, д.12 к.5

Устройство обогреваемой поверхности дворовой спортивной площадки

Площадь обогреваемой поверхности – 72 кв.м.

Устройство площадки таяния снега



Размер площадки таяния снега – 24 кв.м.

Монтаж теплонасосной установки и оборудования

Подводимая электроэнергия - 3х380 В, 20 кВт. Максимальный объём стока талой воды - 5000 л./сут

Автоматизация технологического процесса

Полная автоматизация:

 Автоматическое управление процессом плавления снега

Автоматический контроль параметров работы оборудования, вкл-откл оборудования согласно заданной программы на основе информации о температуре воздуха и наличии снега

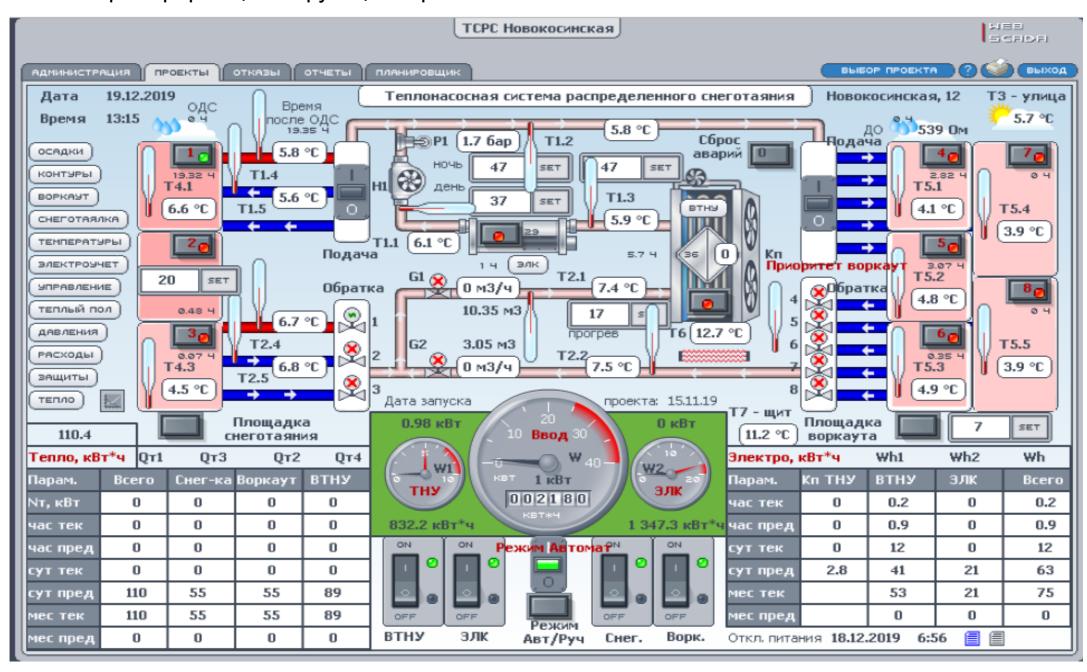
• Автоматический контроль исправности оборудования

Информирование оператора, сервисной организации, владельца о возникновении внештатных и аварийный ситуаций

 Сбор и передача информации о выработке и потреблении энергии

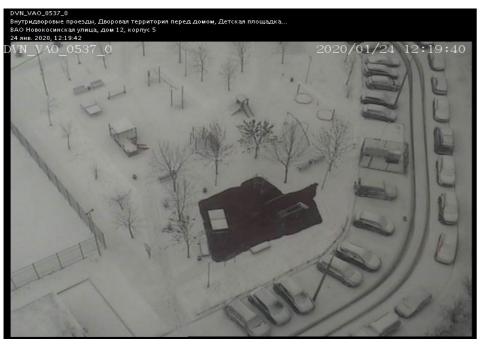
Удаленный контроль и управление:

- Контроль параметров работы оборудования, вкл-откл оборудования, удаленная настройка при изменении погодных условий
- Анализ информации о выработке и потреблении энергии



Запуск системы в эксплуатацию и тестирование работы – 10 календарных дней

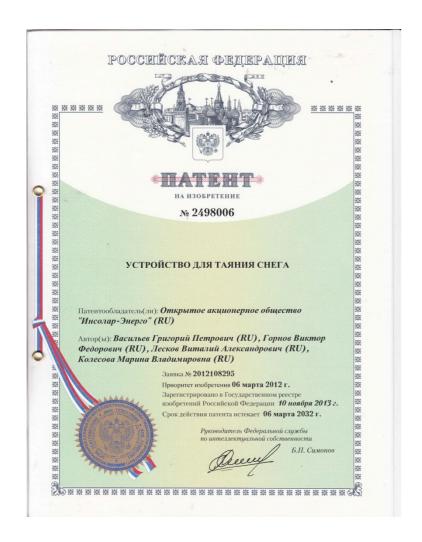
Система управления и диспетчеризации


Сбор информации о функционировании TCPC обеспечивается SCADA-системой

Внешний вид мнемосхемы SCADA-системы TCPC

Спортивная площадка после снегопада

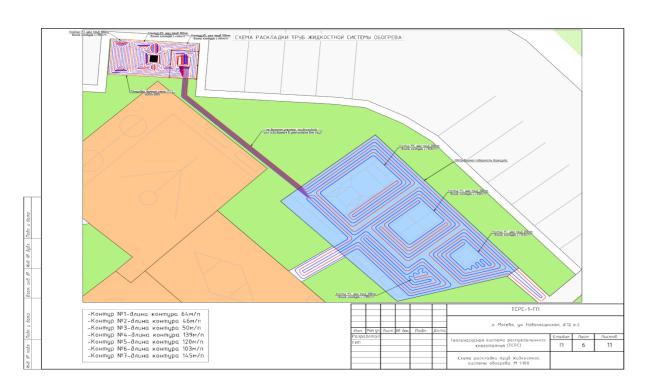
Утилизация снежной массы с использованием дворовой снеготаялки

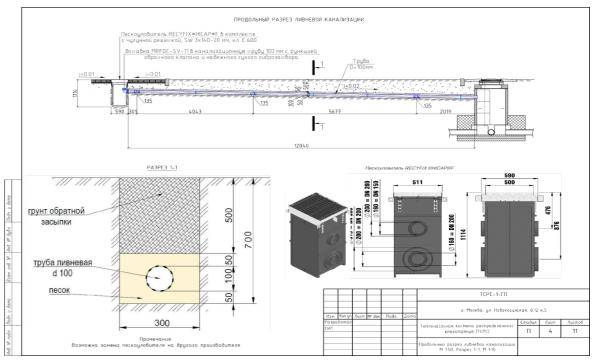


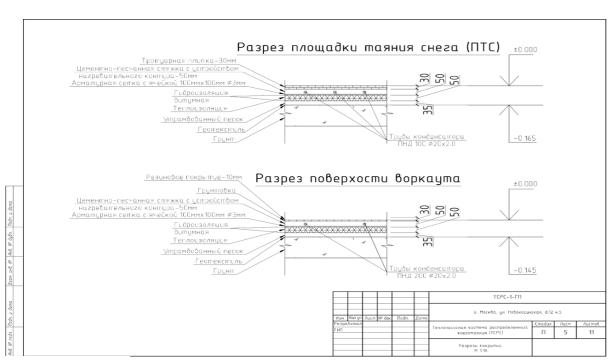
Расчетный сезонный объем утилизации снега – 1200 куб.м.

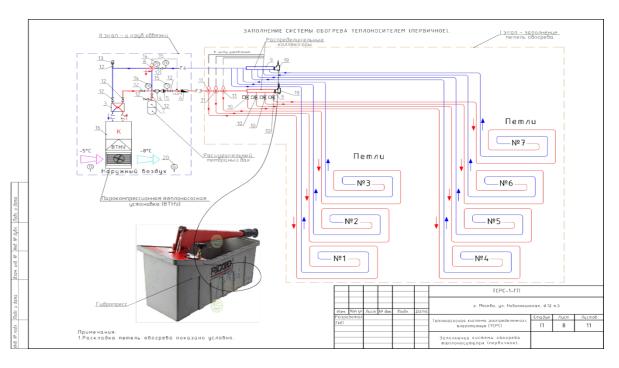
Патенты Группы компаний ИНСОЛАР

относящиеся к системам снеготаяния






Интеллектуальная собственность Группы компаний ИНСОЛАР защищена патентами РФ

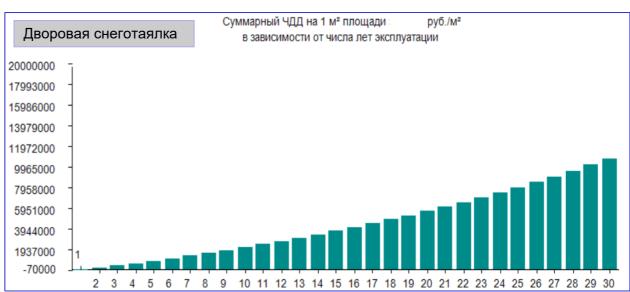


Проектная документация пилотной ТСРС

Разработаны типовые проекты отдельно на дворовую снеготаялку и обогреваемую площадку

Технико-экономические показатели

в ценах ноября 2019 г


		Обогрев спортивной	Обогрев спортивной
Наименование	Единицы	площадки с	площадки с
параметра	измерения	использованием	использованием
		теплового насоса	электрического котла
Электрическая мощность системы	кВт	5	15
Потребление электроэнергии за сезон	кВт∙ч	14 160	42 480
Стоимость электроэнергии	руб./кВт∙ч	4,10	
Первоначальные капитальные затраты	тыс. руб.	2 300	1 900
Эксплуатационные расходы	тыс. руб. в год	70	30

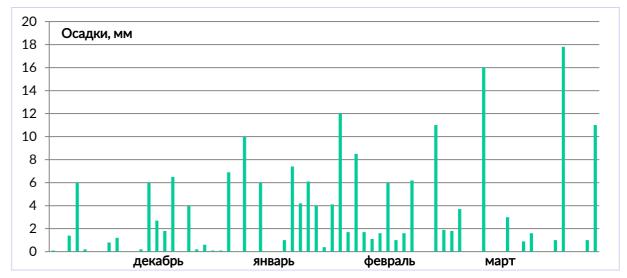
Наименование параметра	Единицы измерени я	Значение
Интегральный ЧДД за 30 лет	тыс. руб.	3 990
Срок окупаемости	лет	3

Наименование параметра	Единицы измерения	Теплонасосная снеготаялка	Электрическая снеготаялка	
Электрическая мощность системы	кВт	5	15	
Потребление электроэнергии за сезон	кВт∙ч	29 250	87 750	
Стоимость электроэнергии	руб./кВт∙ч	4,10		
Первоначальные капитальные затраты	тыс. руб.	1 800	1 400	
Эксплуатационные расходы	тыс. руб. в год	70	30	

Наименование параметра	Единицы измерени я	Значение
Интегральный ЧДД за 30 лет	тыс. руб.	10 930
Срок окупаемости	лет	1

Применение теплонасосной установки вместо прямого электрического нагрева на снеготаялке окупается за 1 год, на обогреваемой спортивной площадке – за 3 года

Удельные показатели


в ценах ноября 2019 г

Данные по утилизации снега в зимний период, м.куб.

Период	Спортивная площадка	Снеготаялка	Bcero
Декабрь	13,4	4,5	17,9
Январь	62,9	32,0	94,9
Февраль	41,3	25,7	67,0
Март	22,2	7,4	29,6
Итого	139,8	69,6	209,4

График выпадения снежных осадков

Себестоимость утилизации 1 куб.м. снега по результатам пилотного проекта

Снеготаялка 79 руб.

Спортивная площадка 268 руб.

По результатам пилотного проекта средний коэффициент преобразования электрической энергии в тепловую составил ~ 2,5

Интеграция ТСРС с городскими информационными системами

- SCADA-система¹ обеспечивает автоматическую передачу данных поставщикам информации в АСУ ОДС по количеству электроэнергии, затраченной на таяние снега, и текущему состоянию системы
- SCADA-система обеспечивает автоматическое формирование и передачу по запросу оператора ОДС помесячных архивов по количеству затраченной электроэнергии и рабочим состояниям системы снеготаяния
- После незначительного расширения функционала АСУ ОДС, возможно добавление отчетов по количеству утилизированного системой снега в раздел АРМ «Загрузка данных снегосплавных пунктов»

1.SCADA - программно-аппаратный комплекс сбора данных и диспетчерского контроля

Рекомендации по масштабированию ТСРС

- Площадки таяния снега целесообразно устанавливать:
 - во дворах жилых домов и общественных зданий, с территории которых осуществляется вывоз снега для утилизации в объёме более 200 м³/год
 - в местах с ограниченной возможностью подъезда спецтехники для вывоза снежной массы
- Подогрев поверхности с использованием ТСРС рекомендуется для следующих элементов дворовых территорий:
 - Детские и спортивные площадки
 - Тротуары
 - Входные группы жилых зданий
- Возможно применение ТСРС для подогрева участков улично-дорожной сети:
 - Пешеходных дорожек (тротуаров)
 - Остановок общественного транспорта
 - Ступеней подземных пешеходных переходов

Система распределенного снеготаяния – важный элемент формирования комфортной городской среды